top of page
검색

Mobility-Induced Graph Learning for WiFi Positioning

작성자 사진: RAMORAMO

최종 수정일: 2024년 5월 17일

Professor Seong-Lyun Kim's research team, in collaboration with the Korea Railroad Research Institute, has developed a path estimation algorithm using WiFi and a graph neural network. This study transforms user movement patterns into graphs, significantly reducing positioning errors in environments where distance estimation errors are large (2-10m) to about 1m. This result is scheduled to be published in a special issue of the IEEE Journal of Selected Areas in Communications (JSAC), a leading journal in the field of communicationsm with an Impact Factor of 16.4. This work was led by graduate student Kyuwon Han (first author).



K. Han, S.M. Yu, S.-L. Kim, S.-W. Ko "Mobility-Induced Graph Learning for WiFi Positioning," to appear in IEEE Journal on Selected Areas in Communications (JSAC). 2024

댓글 0개

최근 게시물

전체 보기

[RAMO] 2024년도 한-EU 6G 과제 최종 선정

RAMO 연구실이 2024년도 한-EU 6G 과제에 최종 선정되었다. 본 과제는 연세대학교가 주관으로 연구하며 국내 및 유럽 기관들과 공동으로 연구에 진행한다. 국내에서는 서울대학교, 고려대학교, 한국전자통신연구원(ETRI), 엘지전자(주)가...

Comments


Robotic & Mobile Networks Laboratory

School of Electrical & Electronic Engineering, Yonsei University, 

50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea

bottom of page