top of page
검색

Energy-Efficient Edge Learning via Joint Data Deepening-and-Prefetching

작성자 사진: RAMORAMO

Prof. Kim's research team paper, "Energy-efficient edge learning via joint data deepening-and-prefetching", has been accepted by IEEE Transactions on Wireless Communications (IEEE TWC, IF 10.4). This paper introduces a novel algorithm that improves device energy efficiency by measuring the importance of the data in feature units, reducing the data required to train an artificial intelligence model. This work was led by graduate student Sujin Kook (first author).














S. Kook, Won-Yong Shin, S.-L. Kim, and S.-W. Ko, "Energy-Efficient Edge Learning via Joint Data Deepening-and-Prefetching," to appear in IEEE Transactions on Wireless Communications. 2024

댓글 0개

최근 게시물

전체 보기

[RAMO] 2024년도 한-EU 6G 과제 최종 선정

RAMO 연구실이 2024년도 한-EU 6G 과제에 최종 선정되었다. 본 과제는 연세대학교가 주관으로 연구하며 국내 및 유럽 기관들과 공동으로 연구에 진행한다. 국내에서는 서울대학교, 고려대학교, 한국전자통신연구원(ETRI), 엘지전자(주)가...

Comments


Robotic & Mobile Networks Laboratory

School of Electrical & Electronic Engineering, Yonsei University, 

50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea

bottom of page